Solar Receivers for Concentrated Solar Power Plant

Joelle BLEIN
CEA Le Ripault, BP 16, 37260 MONTS, FRANCE

(joelle.blein@cea.fr)
Solar receiver for Tower technology

Topics

- **Goals:**
 - Development of high temperature receivers (> 1000°C) to increase the generating efficiency of solar power tower

- **Requirements:**
 - Wall temperature: front face > 1300°C, rear face ~ 1000°C
 - Oxidation resistance under pressurised air flow (5 bars)
 - High thermal shocks resistance

- **Candidate materials for air receivers**
 - Ceramic materials
 - Solid substrate for Tube receiver
 - Cellular foam for Volumetric receiver
 - Surface functionalisation
 - Oxidation protective layer
 - Optical selectivity layer
Solar receiver for Tower technology

Development of volumetric air receiver

- Numerical materials:
 - Digitalization of the cellular structure
 - Thermal properties modelling
 - Simulation of thermal behaviour, basic properties pre-dimensioning
- Manufacturing and functionalisation of materials
 - Optimisation of the cellular structure (cells density, size cells, structure characteristics, …)
 - Oxidation protective coating
 - Optical selectivity layer
 - Characterization & Tests behaviour
- Integration of materials in module receiver
 - Definition of a laboratory module representative (geometry, dimensioning)
 - Tests behaviour under representative operating conditions (to be defined)
Previous results on air receiver

- Evaluation of resistance under oxidizing conditions:
 - Thermogravimetric analysis
 - Under air flow from ambient to 1400°C
 - Protective layer is not thermally damaged ($\Delta m = 0.07\%$)
 - Heat treatment furnace
 - Test under air flow at 1000°C
 - No significant mass variation ($< 0.02\%$) after 1000h
 - Thermal shocks
 - Testing facility: air furnace
 - Natural cooled down from 1000°C to room temperature
 - Good behaviour of the protective layer after 15 thermal shocks
Manufacture resources

Liquid impregnation

- Hot treatment furnace and carbonizing stove

Chemical vapor infiltration/deposition

- Laboratory scale CVI reactor

Rapid densification (« film boiling process »)

- « Kalamazoo » equipment

Materials:
- Carbon, carbide or ceramic matrix
- Deposition of carbon, carbide, etc.

Carbon foam:
- Density: 0.05 to 1g/cc
- Open porosity: 50% to 97%
- Dimensions: Φ 400mm – H 200mm
- Thermal conductivity: 0.05 to 100W/m*K

Capacity:
- Hot zone Φ 150mm – H 300mm
- Coating/matrix materials: PyC, SiC, HfC, ZrC, TaC, etc.